Jahr: 2022
Kategorie:
Publikation

NeuralMeshing: Differentiable Meshing of Implicit Neural Representations

Teaser-Bild der NeuralMeshing-Publikation

Überblick

Dies ist eine Arbeit, die wir für die GCPR 2022 eingereicht haben und die als Oral angenommen wurde. In dieser Arbeit schlagen wir einen neuartigen Meshing-Algorithmus für neuronale implizite Repräsentationen vor, welcher gelernte Information über die Krümmungen in der Geometrie als Teil der neuronalen impliziten Repräsentation verwendet, um die erzeugten Dreiecksgrößen an die unterliegende geometrische Krümmung anzupassen.

Zusammenfassung

The generation of triangle meshes from point clouds, i.e. meshing, is a core task in computer graphics and computer vision. Traditional techniques directly construct a surface mesh using local decision heuristics, while some recent methods based on neural implicit representations try to leverage data-driven approaches for this meshing process. However, it is challenging to define a learnable representation for triangle meshes of unknown topology and size and for this reason, neural implicit representations rely on non-differentiable post-processing in order to extract the final triangle mesh. In this work, we propose a novel differentiable meshing algorithm for extracting surface meshes from neural implicit representations. Our method produces the mesh in an iterative fashion, which makes it applicable to shapes of various scales and adaptive to the local curvature of the shape. Furthermore, our method produces meshes with regular tessellation patterns and fewer triangle faces compared to existing methods. Experiments demonstrate the comparable reconstruction performance and favorable mesh properties over baselines.

Autoren

Mathias Vetsch, Sandro Lombardi, Marc Pollefeys und Martin R. Oswald

Veranstaltung

GCPR 2022, Konstanz

Links