Jahr: 2021
Kategorie:
Publikation

LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human Bodies

Teaser-Bild der LatentHuman-Veröffentlichung

Überblick

Dies ist eine Arbeit, die wir für die 3DV 2021 eingereicht haben und die als Oral angenommen wurde. In dieser Arbeit schlagen wir eine Repräsentation für den menschlichen Körper vor, bei der die latenten Räume von Geometry und Pose entkoppelt sind, was eine Vielzahl von Anwendungen ermöglicht, z. Bsp Interpolation der Geometrie, Model-Fitting, das Tracken von Posen und die Übertragung von Bewegungsmustern.

Zusammenfassung

3D representation and reconstruction of human bodies have been studied for a long time in computer vision. Traditional methods rely mostly on parametric statistical linear models, limiting the space of possible bodies to linear combinations. It is only recently that some approaches try to leverage neural implicit representations for human body modeling, and while demonstrating impressive results, they are either limited by representation capability or not physically meaningful and controllable. In this work, we propose a novel neural implicit representation for the human body, which is fully differentiable and optimizable with disentangled shape and pose latent spaces. Contrary to prior work, our representation is designed based on the kinematic model, which makes the representation controllable for tasks like pose animation, while simultaneously allowing the optimization of shape and pose for tasks like 3D fitting and pose tracking. Our model can be trained and fine-tuned directly on non-watertight raw data with well-designed losses. Experiments demonstrate the improved 3D reconstruction performance over SoTA approaches and show the applicability of our method to shape interpolation, model fitting, pose tracking, and motion retargeting.

Autoren

Sandro Lombardi*, Bangbang Yang*, Tianxing Fan, Hujun Bao, Guofeng Zhang, Marc Pollefeys und Zhaopeng Cui

*Gleiche Beiträge

Veranstaltung

3DV 2021, Online

Links